If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(S)=(40-2S)(30-2S)
We move all terms to the left:
(S)-((40-2S)(30-2S))=0
We add all the numbers together, and all the variables
S-((-2S+40)(-2S+30))=0
We multiply parentheses ..
-((+4S^2-60S-80S+1200))+S=0
We calculate terms in parentheses: -((+4S^2-60S-80S+1200)), so:We add all the numbers together, and all the variables
(+4S^2-60S-80S+1200)
We get rid of parentheses
4S^2-60S-80S+1200
We add all the numbers together, and all the variables
4S^2-140S+1200
Back to the equation:
-(4S^2-140S+1200)
S-(4S^2-140S+1200)=0
We get rid of parentheses
-4S^2+S+140S-1200=0
We add all the numbers together, and all the variables
-4S^2+141S-1200=0
a = -4; b = 141; c = -1200;
Δ = b2-4ac
Δ = 1412-4·(-4)·(-1200)
Δ = 681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$S_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(141)-\sqrt{681}}{2*-4}=\frac{-141-\sqrt{681}}{-8} $$S_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(141)+\sqrt{681}}{2*-4}=\frac{-141+\sqrt{681}}{-8} $
| 36n-26n=136 | | 9x-18=8x+16 | | g+74=15 | | w²-7w-18=0 | | S(x)=(40-2x)(30-2x | | 5k-9=2k+12 | | t2+100=0 | | (30)=11.00+0.10x | | 6(x-7)=28 | | 10×4/5=x/5 | | 10×4/5=n/5 | | -10t²+25t+125=0 | | “4-5x=24 | | 8r=4/5 | | a2+6a-3=0 | | 2x-5=69 | | 10/9=g/3 | | (X+0.9)(x+1.9)=0 | | 2x+4=20-6 | | 14x=220-11x | | 14x=96.8 | | 9x=72$ | | x+40/36=3 | | 96+2w=2(80-3w | | x+40/180=3/5 | | -16t^2-8t+54=6 | | xx4-3=33 | | 4(3d−2)=8d−5 | | -3(4x-1)=3(2x-5) | | 3n8=10 | | |-10m|+8=88 | | 1/3x+44=4x |