T(2t-3)/t+6;t=-2

Simple and best practice solution for T(2t-3)/t+6;t=-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for T(2t-3)/t+6;t=-2 equation:



(2T-3)/T+6T=-2
We move all terms to the left:
(2T-3)/T+6T-(-2)=0
Domain of the equation: T!=0
T∈R
We add all the numbers together, and all the variables
6T+(2T-3)/T+2=0
We multiply all the terms by the denominator
6T*T+(2T-3)+2*T=0
We add all the numbers together, and all the variables
2T+6T*T+(2T-3)=0
Wy multiply elements
6T^2+2T+(2T-3)=0
We get rid of parentheses
6T^2+2T+2T-3=0
We add all the numbers together, and all the variables
6T^2+4T-3=0
a = 6; b = 4; c = -3;
Δ = b2-4ac
Δ = 42-4·6·(-3)
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$
$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{22}}{2*6}=\frac{-4-2\sqrt{22}}{12} $
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{22}}{2*6}=\frac{-4+2\sqrt{22}}{12} $

See similar equations:

| 4(2x+9)=-45+9 | | 8+3(x-6)=14 | | -(-4x+7)=-2+4 | | 100f=27.272727-f99f= | | 5x-7+5x=-57 | | 1=q−7 | | 5(x-1)+8=-2 | | 896=20-12+x | | 5(2x)+1)=25 | | x/3-x+2/6=5/3 | | 51–3+5x=58 | | 7v+12=7(v-1)-5 | | -5(-6+2r)=100 | | 2x-8=x+17=1/2 | | 896=20-12x | | X+x+2/4x=22 | | 4x-7+3x=77 | | -218=7(1+6b)+3b | | 6+n=10,n=1 | | 17n+8=3(2n+5) | | 2(10+10x)=20 | | -95=5(-3+4x | | 5+5x-7x=5 | | -f=0.272727 | | 7(x-10)-3=4(2x-9) | | 8-(1/2s)=15+(2/3s) | | 7(2x+4•-2)-5(x•-2-10)=60 | | X-17=3y+60 | | -24-5v=v | | 5+-0.5-12=2x-0.5-7 | | -15+g/3=-5 | | 2-3x÷5=-11 |

Equations solver categories