T(n)=(40-n)(40+2n)

Simple and best practice solution for T(n)=(40-n)(40+2n) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for T(n)=(40-n)(40+2n) equation:



(T)=(40-T)(40+2T)
We move all terms to the left:
(T)-((40-T)(40+2T))=0
We add all the numbers together, and all the variables
T-((-1T+40)(2T+40))=0
We multiply parentheses ..
-((-2T^2-40T+80T+1600))+T=0
We calculate terms in parentheses: -((-2T^2-40T+80T+1600)), so:
(-2T^2-40T+80T+1600)
We get rid of parentheses
-2T^2-40T+80T+1600
We add all the numbers together, and all the variables
-2T^2+40T+1600
Back to the equation:
-(-2T^2+40T+1600)
We get rid of parentheses
2T^2-40T+T-1600=0
We add all the numbers together, and all the variables
2T^2-39T-1600=0
a = 2; b = -39; c = -1600;
Δ = b2-4ac
Δ = -392-4·2·(-1600)
Δ = 14321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-39)-\sqrt{14321}}{2*2}=\frac{39-\sqrt{14321}}{4} $
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-39)+\sqrt{14321}}{2*2}=\frac{39+\sqrt{14321}}{4} $

See similar equations:

| x+1.5x=15000 | | 8+5x-2x=6x | | 24+4x=-6x+124 | | 4^(2-3r)=16 | | 4x-2=68-2x | | 2x-4(x-2)=-4+5x-16 | | b+4/5=15 | | -2.12-x=2.18 | | 5b^2=-9 | | 3(5x-1)-2(3x+5)=0 | | 4r+12=-72 | | 10a-2=16 | | F(5)=3.14r^ | |               –7x+10=–20 | | -6p+3=-2(9p-6)-3(10-5p) | | 3q-1=2q+1 | | 2x+x=360-8x | | 2x+x=360-x | | 15+6n=45+8n | | 5(y+2)-3=52 | | (9x^2+8x)=(2x^2+3x) | | 2+4n=n-4 | | g85=1 | | (-3)+n=4 | | 18f=3 | | e+38=2 | | c2=4.6 | | 20+2x-7x=0 | | d+8=-143 | | 17+12x=12x-3 | | 2x-13=79 | | 1x=3.4x |

Equations solver categories