T(n)=-15+1/2n

Simple and best practice solution for T(n)=-15+1/2n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for T(n)=-15+1/2n equation:



(T)=-15+1/2T
We move all terms to the left:
(T)-(-15+1/2T)=0
Domain of the equation: 2T)!=0
T!=0/1
T!=0
T∈R
We add all the numbers together, and all the variables
T-(1/2T-15)=0
We get rid of parentheses
T-1/2T+15=0
We multiply all the terms by the denominator
T*2T+15*2T-1=0
Wy multiply elements
2T^2+30T-1=0
a = 2; b = 30; c = -1;
Δ = b2-4ac
Δ = 302-4·2·(-1)
Δ = 908
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{908}=\sqrt{4*227}=\sqrt{4}*\sqrt{227}=2\sqrt{227}$
$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{227}}{2*2}=\frac{-30-2\sqrt{227}}{4} $
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{227}}{2*2}=\frac{-30+2\sqrt{227}}{4} $

See similar equations:

| 45(10a+5)+4=56(6a+12)+7 | | 6x-4/3=4x-11/6 | | 4y+5/12=7/12 | | 9x/3=23 | | 1/4x+2=3-3/2x | | 1/4x+2/3=5/6x-2 | | 5k-5=45 | | 8+9p=35 | | 2x-19x=0 | | 4m÷3=8+m | | 12x+7.7=11x−2.6 | | 10+G=2g+8 | | 2x+22=5x-2 | | x+9=-x+19 | | x+11=4x+26 | | 11x-10=-20 | | x-8/4=2x-1/3 | | x+10=-3x-14 | | -14+3x=-2(4-2x) | | 5x+15=x-21 | | 2/3x-5=2/9x+2 | | 2/3x-5=2/9x+22 | | 3x+19=17x-3 | | 35=3+8y | | 7n-3=17n-63 | | 12r-3=5r+32 | | 4=-1+|2-1/4w| | | 3x+5x=4-x=7=88 | | 7k+12=20k-53 | | 3x-8=6x+9 | | 5x+5=11x-13 | | 11(2m=2)-6=4m+4(3m-2) |

Equations solver categories