T(x)=-x2+24x-106

Simple and best practice solution for T(x)=-x2+24x-106 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for T(x)=-x2+24x-106 equation:



(T)=-T2+24T-106
We move all terms to the left:
(T)-(-T2+24T-106)=0
We add all the numbers together, and all the variables
-(-1T^2+24T-106)+T=0
We get rid of parentheses
1T^2-24T+T+106=0
We add all the numbers together, and all the variables
T^2-23T+106=0
a = 1; b = -23; c = +106;
Δ = b2-4ac
Δ = -232-4·1·106
Δ = 105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-\sqrt{105}}{2*1}=\frac{23-\sqrt{105}}{2} $
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+\sqrt{105}}{2*1}=\frac{23+\sqrt{105}}{2} $

See similar equations:

| 0.10=t873.36−2.15 | | 2y+4-5y=10+9 | | 3x^=1/27 | | 7x2−16x=8 | | 2x^=16 | | 3(12)+2x=10 | | x^2-64x-112=0 | | (4x/3)16=12 | | 3x^=9 | | 3x^=27 | | 5x-2.3=-18.8 | | 3^x=27 | | 48=-7-x | | 0.75x=1.25 | | 3/8+5/2x=7/12 | | -3z-9=7-z | | 7k=3+6k | | 10(g+5)=2(g+9)I | | -6j+5=-3-2j | | 8n+16.2=16.0 | | 9x+7=5(x-5) | | -6x+36=-6(x-5( | | 1.8d+3=(0.9d-1.5) | | 5(2x+4)=8(-1+x)-4 | | 2(z+7)=21 | | 1.5(11.4r-4.5)=74.9 | | 6(6+2x)=8(-1+x)-4 | | X+x/3=36 | | X^3-48x+192=0 | | 3/4x+3=11 | | 4b+3b=7b | | -5=7+4w |

Equations solver categories