If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5(1/6T-8)=40-T-1/6T
We move all terms to the left:
-5(1/6T-8)-(40-T-1/6T)=0
Domain of the equation: 6T-8)!=0
T∈R
Domain of the equation: 6T)!=0We add all the numbers together, and all the variables
T!=0/1
T!=0
T∈R
-5(1/6T-8)-(-1T-1/6T+40)=0
We multiply parentheses
-5T-(-1T-1/6T+40)+40=0
We get rid of parentheses
-5T+1T+1/6T-40+40=0
We multiply all the terms by the denominator
-5T*6T+1T*6T-40*6T+40*6T+1=0
Wy multiply elements
-30T^2+6T^2-240T+240T+1=0
We add all the numbers together, and all the variables
-24T^2+1=0
a = -24; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-24)·1
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*-24}=\frac{0-4\sqrt{6}}{-48} =-\frac{4\sqrt{6}}{-48} =-\frac{\sqrt{6}}{-12} $$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*-24}=\frac{0+4\sqrt{6}}{-48} =\frac{4\sqrt{6}}{-48} =\frac{\sqrt{6}}{-12} $
| 2y^-4+5y^-2-3=0 | | 2x-30=-7(8x-4) | | k−–524=588 | | 104÷(104÷(x-5)-5)=x | | x+21=-42 | | –26y=–910 | | 47+31x=180 | | x((104÷(x-5))=104 | | 22x=-28 | | 1-11(x+8)=5+7x | | (6x-7)=(83-2x) | | -19=8-(j+23) | | (3x-34)=(2x+19) | | x(2x-6)-15=0 | | -2(v-4)+15=29 | | 44=4(q+11)-8 | | 8(z-4)+3=-93 | | n/n+n+n+n=16 | | (√3)^2x+4=243 | | 32=6+7a-5a | | -3(2x+5)-7=14 | | x/7+x/5=10 | | -8(-3k-5)=3k+19 | | -8(-3k-5)=k+19 | | t^2-20t-96=0 | | 20t+20=200 | | (5x-2)/2x=2 | | 2x-1=x^2-16x+64 | | (x-1)(x-4)=1 | | T2-20t-96=0 | | 4(x-3)=2x+(-10) | | (3m)/6−23;m=8 |