T2x-2=3(x/1)-5(6-2x)

Simple and best practice solution for T2x-2=3(x/1)-5(6-2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for T2x-2=3(x/1)-5(6-2x) equation:



2T-2=3(T/1)-5(6-2T)
We move all terms to the left:
2T-2-(3(T/1)-5(6-2T))=0
Domain of the equation: 1)-5(6-2T))!=0
T∈R
We add all the numbers together, and all the variables
2T-(3(+T/1)-5(-2T+6))-2=0
We multiply all the terms by the denominator
2T*1)-5(-2T+T-2T+6))-(3(-2*1)-5(+6))=0
We add all the numbers together, and all the variables
2T*1)-5(-3T+6))-(3(-2)-56)=0
We add all the numbers together, and all the variables
-3T+2T*1)-5(=0
Wy multiply elements
2T^2-3T=0
a = 2; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·2·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*2}=\frac{0}{4} =0 $
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*2}=\frac{6}{4} =1+1/2 $

See similar equations:

| 2/5b+3/7=11/5 | | 3/4(8x+16=2/3(15x-12) | | 4x-32-12x+56=8 | | 6-30x-9=-57 | | 8x=2x=15x-10 | | 1÷3(6x-9)=10×+7÷2 | | 6-30x-9=57 | | 1(3/8)a+1/4=7/8 | | 3x+44+(x+20)=x | | 70=7(x+3) | | X=39-3/4x | | 3/4(2x+7)=9/4 | | 25x+500=1200 | | -0.25x=3 | | 6x+4=14x-6 | | (2x+1)^2=25 | | 6|-5x-9|=57 | | 2(x+4)=5x-4 | | 2x-3/4-x=3x+4/2+2x/8-1 | | 0=85+(-10)(t) | | x^2+6x+8+6x+8=0 | | 3(7t+1)-11=t-(t+7) | | 6.5-8x+5.5=6x-2-2x | | 13x-25=56 | | 6=-0.125w | | 6x+42+6x-8=142 | | 5x/6-3/8-x/8=4x/12+3/12 | | 3(7t+1)-11=(t+7) | | 6x-(5x+9)=3x-29 | | 4^x+3=32 | | 2/7(14*8+7/2)-18=x | | 4=-2(m-2)+2m |

Equations solver categories