If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(V)=(11-2V)(8.5-2V)=0
We move all terms to the left:
(V)-((11-2V)(8.5-2V))=0
We add all the numbers together, and all the variables
V-((-2V+11)(-2V+8.5))=0
We multiply parentheses ..
-((+4V^2-17V-22V+93.5))+V=0
We calculate terms in parentheses: -((+4V^2-17V-22V+93.5)), so:We add all the numbers together, and all the variables
(+4V^2-17V-22V+93.5)
We get rid of parentheses
4V^2-17V-22V+93.5
We add all the numbers together, and all the variables
4V^2-39V+93.5
Back to the equation:
-(4V^2-39V+93.5)
V-(4V^2-39V+93.5)=0
We get rid of parentheses
-4V^2+V+39V-93.5=0
We add all the numbers together, and all the variables
-4V^2+40V-93.5=0
a = -4; b = 40; c = -93.5;
Δ = b2-4ac
Δ = 402-4·(-4)·(-93.5)
Δ = 104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{104}=\sqrt{4*26}=\sqrt{4}*\sqrt{26}=2\sqrt{26}$$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-2\sqrt{26}}{2*-4}=\frac{-40-2\sqrt{26}}{-8} $$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+2\sqrt{26}}{2*-4}=\frac{-40+2\sqrt{26}}{-8} $
| 6=k(24) | | -29=(2a-1)+2 | | 3(m+6)+5=-4 | | 13b-5=9b+35 | | 84/12=x/6 | | 6(z+3)=-36 | | 5+p=8+5+5p+4 | | Y=2.81=9y | | q—100=-43 | | 5n,n=25 | | -7f+6f-10=10+9f | | Y=38y | | -6/7r=29 | | 8yy=3 | | -17=0.5p | | -2x=12=23 | | 11=3n-(-10) | | 12=-6(z-7) | | 3=t+97 | | –8−2w=–w | | 10=–8+2y | | 5=1/2(4m+6) | | 26.54=5g+3.94 | | 12=3+3s | | 5/z-21=2 | | 4x+x-2/2=2x+3 | | x29=87 | | 4y+10=–8+2y | | 13=k3+5 | | 42-10=5r+2r= | | -5(x-8)=60 | | -73=d+3 |