V(x)=(70-2x)(50-2x)

Simple and best practice solution for V(x)=(70-2x)(50-2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for V(x)=(70-2x)(50-2x) equation:


Simplifying
V(x) = (70 + -2x)(50 + -2x)

Multiply V * x
xV = (70 + -2x)(50 + -2x)

Multiply (70 + -2x) * (50 + -2x)
xV = (70(50 + -2x) + -2x * (50 + -2x))
xV = ((50 * 70 + -2x * 70) + -2x * (50 + -2x))
xV = ((3500 + -140x) + -2x * (50 + -2x))
xV = (3500 + -140x + (50 * -2x + -2x * -2x))
xV = (3500 + -140x + (-100x + 4x2))

Combine like terms: -140x + -100x = -240x
xV = (3500 + -240x + 4x2)

Solving
xV = 3500 + -240x + 4x2

Solving for variable 'x'.

Reorder the terms:
-3500 + 240x + xV + -4x2 = 3500 + -240x + 4x2 + -3500 + 240x + -4x2

Reorder the terms:
-3500 + 240x + xV + -4x2 = 3500 + -3500 + -240x + 240x + 4x2 + -4x2

Combine like terms: 3500 + -3500 = 0
-3500 + 240x + xV + -4x2 = 0 + -240x + 240x + 4x2 + -4x2
-3500 + 240x + xV + -4x2 = -240x + 240x + 4x2 + -4x2

Combine like terms: -240x + 240x = 0
-3500 + 240x + xV + -4x2 = 0 + 4x2 + -4x2
-3500 + 240x + xV + -4x2 = 4x2 + -4x2

Combine like terms: 4x2 + -4x2 = 0
-3500 + 240x + xV + -4x2 = 0

The solution to this equation could not be determined.

See similar equations:

| V(x)=(70+-2x)(50+-2x) | | V(x)=(70-2x)(50-2x)(x) | | 8(y-3)=6y-38 | | 7.0625= | | 5x^2-60=-180 | | (n+2)(n-8)=0 | | -140=-4x-5(6x-6) | | log(x)-log(3)=1 | | 4(4x-2.1)=4x-8.4 | | 3x^2+3y^2-18x+6y=-2 | | Xsquared-5x=0 | | 5m-(8+2m)= | | 6x^2-5=2x | | 3(x+2.17)=2x | | (3z-2)(3+z)= | | x^2+8x+6=25 | | 2x+5=4x+11 | | (lnx)(9x^8)= | | 4/3*x=7/12*x | | 5w^4-5w=0 | | 8m-(5+6m)= | | 5.9=5x+1.8 | | 25+5=8 | | x/2+4x/3=2x-1.5 | | log(4x+5)=log(x+5)+log(3) | | 3560+15x=c | | (n-4)(n-7)=0 | | 7x-2/-4=-10 | | Y-2.4=9 | | 4x^3-280x^2+4900=4x^3-200x^2+2500x | | 6m-(9+2m)= | | 8x+(5x+12)=90 |

Equations solver categories