V=((24-2x)(12-2x))

Simple and best practice solution for V=((24-2x)(12-2x)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for V=((24-2x)(12-2x)) equation:



=((24-2V)(12-2V))
We move all terms to the left:
-(((24-2V)(12-2V)))=0
We add all the numbers together, and all the variables
-(((-2V+24)(-2V+12)))=0
We multiply parentheses ..
-(((+4V^2-24V-48V+288)))=0
We calculate terms in parentheses: -(((+4V^2-24V-48V+288))), so:
((+4V^2-24V-48V+288))
We calculate terms in parentheses: +((+4V^2-24V-48V+288)), so:
(+4V^2-24V-48V+288)
We get rid of parentheses
4V^2-24V-48V+288
We add all the numbers together, and all the variables
4V^2-72V+288
Back to the equation:
+(4V^2-72V+288)
We get rid of parentheses
4V^2-72V+288
Back to the equation:
-(4V^2-72V+288)
We get rid of parentheses
-4V^2+72V-288=0
a = -4; b = 72; c = -288;
Δ = b2-4ac
Δ = 722-4·(-4)·(-288)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{576}=24$
$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-24}{2*-4}=\frac{-96}{-8} =+12 $
$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+24}{2*-4}=\frac{-48}{-8} =+6 $

See similar equations:

| 60x=-40 | | 6f=5f+3 | | 3(2x+6)=17+11 | | 6x-6-2x=5+2x+4 | | 8q=7q+7 | | 23=x2-7 | | m=+6+18 | | 9x-6=5+3x+7 | | 3x+5=2x=-6 | | 5m+12=7m | | 33=-7+8a | | 2–2y=10 | | 150m-75+53.350=55,000-200m | | 3x+6+3x+28=90 | | 47=x+7 | | x+1x5=30 | | -7y-2-1=-4+y-3 | | 8k=−10k+10 | | 22.75=4g+3.75 | | 4y+6=y-3 | | x=2x+-21 | | 1+5(77-s)=1+5(6) | | 15x-16=0 | | 5^x-2=70 | | 32.99=6g+3.65 | | 65=3t | | r-3=-5 | | x-11(-5)=-105 | | 5^x+1=15625 | | 1/10+5/14m=5/8 | | -6v+3(v+4)=36 | | m-11=-22 |

Equations solver categories