V=(200-2x)(150-2x)

Simple and best practice solution for V=(200-2x)(150-2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for V=(200-2x)(150-2x) equation:



=(200-2V)(150-2V)
We move all terms to the left:
-((200-2V)(150-2V))=0
We add all the numbers together, and all the variables
-((-2V+200)(-2V+150))=0
We multiply parentheses ..
-((+4V^2-300V-400V+30000))=0
We calculate terms in parentheses: -((+4V^2-300V-400V+30000)), so:
(+4V^2-300V-400V+30000)
We get rid of parentheses
4V^2-300V-400V+30000
We add all the numbers together, and all the variables
4V^2-700V+30000
Back to the equation:
-(4V^2-700V+30000)
We get rid of parentheses
-4V^2+700V-30000=0
a = -4; b = 700; c = -30000;
Δ = b2-4ac
Δ = 7002-4·(-4)·(-30000)
Δ = 10000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{10000}=100$
$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(700)-100}{2*-4}=\frac{-800}{-8} =+100 $
$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(700)+100}{2*-4}=\frac{-600}{-8} =+75 $

See similar equations:

| l5-8|-2|=75 | | 9b-6b=39 | | 5x+1+6x=-120 | | 4/5=h/16 | | 34=16-(2z-7) | | 49=7rr | | 2m+6=3-4m | | m(m2-5m+2)=-8 | | 60+70+x+62=180 | | 2.5x+7.75=19 | | 7(6m-8)=112 | | 2x+7(x-5)+2=5(x+1) | | 18x=14x+72 | | 16=v/4-15 | | 7q-8-7q=2q+4 | | z-5=40 | | 2p-4p-20=25 | | m-4=61 | | 22=-2m+30 | | x–3=71 | | M2-5m+2=-8 | | 3^x=255 | | 90+6x+10+20=180 | | 8(6x-4)=-272 | | 3m-4=61 | | 3x-1/2=41/2 | | 8=w/27 | | 0.5+1.1x=-0.4x-5.5 | | -v/5=0 | | 3v+-5=4 | | 2(m-5)+6m=38 | | (6+x)7=21 |

Equations solver categories