V=(32-2x)*(20-2x)*2

Simple and best practice solution for V=(32-2x)*(20-2x)*2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for V=(32-2x)*(20-2x)*2 equation:



=(32-2V)(20-2V)*2
We move all terms to the left:
-((32-2V)(20-2V)*2)=0
We add all the numbers together, and all the variables
-((-2V+32)(-2V+20)*2)=0
We multiply parentheses ..
-((+4V^2-40V-64V+640)*2)=0
We calculate terms in parentheses: -((+4V^2-40V-64V+640)*2), so:
(+4V^2-40V-64V+640)*2
We multiply parentheses
8V^2-80V-128V+1280
We add all the numbers together, and all the variables
8V^2-208V+1280
Back to the equation:
-(8V^2-208V+1280)
We get rid of parentheses
-8V^2+208V-1280=0
a = -8; b = 208; c = -1280;
Δ = b2-4ac
Δ = 2082-4·(-8)·(-1280)
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2304}=48$
$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(208)-48}{2*-8}=\frac{-256}{-16} =+16 $
$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(208)+48}{2*-8}=\frac{-160}{-16} =+10 $

See similar equations:

| X^2+y^2=18;X-2y=-3 | | 3x+2(x+8)=96 | | 2(3x+4)=146 | | 7r+2=5r–20 | | 3x+2x+6=76 | | 8x-5=163 | | 0.5x+(7/4)=3 | | 0.5x+1.75=3 | | x/6=-4/3 | | 6x-15=3x=30 | | (3x+4)(x+4)=64 | | X2+5x-9=5 | | X^2+7x=72 | | 3(2x-6=12 | | 26=(g-9)+12 | | 22x-23=12x-13 | | 4x+1=9x+9 | | 5(m+1=7(m-1 | | 2x-3=3x1 | | 2(x-2)/1/4=16 | | x+0.09x=5000 | | 3-(4x-2)=12 | | 3y-30=-2(y+5) | | 4x+7=2(3x+4) | | X^2+2x+6=-x^2+7x+123 | | 2-5/6x+1/10x-4/5=0 | | 593x^2+42*10^6x-63*10^12=0 | | 5+m=0.3m | | 25/x=5/1 | | 25|x=5|1 | | X=-72x+21÷7 | | 2x+21÷7x=7 |

Equations solver categories