V=(40-x)(60-x)

Simple and best practice solution for V=(40-x)(60-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for V=(40-x)(60-x) equation:



=(40-V)(60-V)
We move all terms to the left:
-((40-V)(60-V))=0
We add all the numbers together, and all the variables
-((-1V+40)(-1V+60))=0
We multiply parentheses ..
-((+V^2-60V-40V+2400))=0
We calculate terms in parentheses: -((+V^2-60V-40V+2400)), so:
(+V^2-60V-40V+2400)
We get rid of parentheses
V^2-60V-40V+2400
We add all the numbers together, and all the variables
V^2-100V+2400
Back to the equation:
-(V^2-100V+2400)
We get rid of parentheses
-V^2+100V-2400=0
We add all the numbers together, and all the variables
-1V^2+100V-2400=0
a = -1; b = 100; c = -2400;
Δ = b2-4ac
Δ = 1002-4·(-1)·(-2400)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$V_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-20}{2*-1}=\frac{-120}{-2} =+60 $
$V_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+20}{2*-1}=\frac{-80}{-2} =+40 $

See similar equations:

| 2((12-b)=8 | | 10(s+10)+9s=5 | | 3(n)+4=-5 | | I-2=4i | | 12=11(2-w) | | 12h=26h | | 5=-2x-23 | | 9=10(p-12) | | 14+g=26g= | | 4=5(w-6) | | 8+10x=50 | | 5|2x-3|+1=66 | | 9t-5{3t-12}=30 | | 2(3)+3b=12 | | -9=a-2 | | 2=4=6=3x+25 | | 2=46=3x+25 | | 3b=9b= | | |x-6|=|3x+2| | | -7(x+5)=15 | | 6(h+5)=−2h | | −14x+28+6x=−44​ | | -p+8=21 | | 6+3x+x=-x+8-26+2 | | -1/2(2-6p)=8/3p | | -3+36x=24x+3 | | 1.5(2x-4)=2(4x=2) | | -3m=-7 | | 7(x+3)-9x=-37 | | 2x+6+4x=2(3x+3) | | 4(x+3)+3x-5=4x-1 | | -12x+7=-7x+27 |

Equations solver categories