W(4w+6)+2w=2(2w2+7w-3)

Simple and best practice solution for W(4w+6)+2w=2(2w2+7w-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for W(4w+6)+2w=2(2w2+7w-3) equation:



(4W+6)+2W=2(2W^2+7W-3)
We move all terms to the left:
(4W+6)+2W-(2(2W^2+7W-3))=0
We add all the numbers together, and all the variables
2W+(4W+6)-(2(2W^2+7W-3))=0
We get rid of parentheses
2W+4W-(2(2W^2+7W-3))+6=0
We calculate terms in parentheses: -(2(2W^2+7W-3)), so:
2(2W^2+7W-3)
We multiply parentheses
4W^2+14W-6
Back to the equation:
-(4W^2+14W-6)
We add all the numbers together, and all the variables
6W-(4W^2+14W-6)+6=0
We get rid of parentheses
-4W^2+6W-14W+6+6=0
We add all the numbers together, and all the variables
-4W^2-8W+12=0
a = -4; b = -8; c = +12;
Δ = b2-4ac
Δ = -82-4·(-4)·12
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$W_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$W_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$W_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-16}{2*-4}=\frac{-8}{-8} =1 $
$W_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+16}{2*-4}=\frac{24}{-8} =-3 $

See similar equations:

| 0=9x^2+6x-74 | | (7x-4)/3x=2 | | -72=19s-45 | | 3,2x-7,2=0 | | -4v+4+2v=-3-2v | | 17w-8w=18 | | 4x-3x=16+(-1)+38 | | Y=-2-1/2y | | 9x/16-2x/4=31/8 | | 7(t+5t+9)+t=t(7t-2)13 | | −9b−81=54 | | 2/7+x/7=51/7 | | 25=-4.9x^2+23.4x+1.3 | | 7x+3=3+6x | | 8z-20=-4 | | 3(x−9)=15 | | 3x2+14x-49=0 | | 7v2-7=0 | | 7x-4+5x+8=148 | | -30=30-5a | | -1x-7x=8 | | -2(j+6)=j+3+3j | | 14w-8w=18 | | 0.13(y-2)+0.22y=0.05y-0.20 | | 4x+3x=16+(-1)+38 | | 10-Z=19z | | 5(-2+8m)=10+5m | | 5y-12=y-6 | | -8b+56=-56 | | 1/4x-1/3=x+7 | | 542=0.5x^2+10x+200 | | 0.19(y-2)+0.04y=0.03y-0.30 |

Equations solver categories