If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(W+5)+28=(W+2)(W+5)
We move all terms to the left:
(W+5)+28-((W+2)(W+5))=0
We get rid of parentheses
W-((W+2)(W+5))+5+28=0
We multiply parentheses ..
-((+W^2+5W+2W+10))+W+5+28=0
We calculate terms in parentheses: -((+W^2+5W+2W+10)), so:We add all the numbers together, and all the variables
(+W^2+5W+2W+10)
We get rid of parentheses
W^2+5W+2W+10
We add all the numbers together, and all the variables
W^2+7W+10
Back to the equation:
-(W^2+7W+10)
W-(W^2+7W+10)+33=0
We get rid of parentheses
-W^2+W-7W-10+33=0
We add all the numbers together, and all the variables
-1W^2-6W+23=0
a = -1; b = -6; c = +23;
Δ = b2-4ac
Δ = -62-4·(-1)·23
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$W_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$W_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$W_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-8\sqrt{2}}{2*-1}=\frac{6-8\sqrt{2}}{-2} $$W_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+8\sqrt{2}}{2*-1}=\frac{6+8\sqrt{2}}{-2} $
| 11z+5z-14z=6 | | W(w+5)+(w+2)(w+5)=28 | | 5s-4s+2s-2s+2s=12 | | k+5k-6k+3k=6 | | -4x-(9-3x)=8x-1 | | 15k-13k+2k=4 | | 3.3x+12=-54 | | -5/11h+7/9=2/8 | | Y=-2x-6+5 | | 2.3x-4.1=12 | | 6x=3x=180 | | -8z+12=-13 | | 7s+2s=18 | | -11,4x+5.4x=48 | | (2w+5)(2w+7)=28 | | 0.2^n=0.3^n | | 1/4(p+2)=9 | | 8(t+)-3(t-4)=6(t-7)+8 | | -6n+11=-5 | | 2x-4+8x=6x+32 | | X+2/3+x+3/2=3 | | 0.5x+0.8-12x=1.6-1.5x | | X+4/x+3=11 | | 22x-66=71-66x | | 4(-4x-4)=-8(2+2x) | | 2x+7=17-5x | | (3x-2)/5=(2x-1)/2 | | 3u=15/4 | | x÷-10=3 | | 8(-46x-31)=11(27-7x) | | V+7=-3v-5 | | 9(4x+8)=12(-3+3x) |