W(w+61/3w)=30

Simple and best practice solution for W(w+61/3w)=30 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for W(w+61/3w)=30 equation:



(W+61/3W)=30
We move all terms to the left:
(W+61/3W)-(30)=0
Domain of the equation: 3W)!=0
W!=0/1
W!=0
W∈R
We add all the numbers together, and all the variables
(+W+61/3W)-30=0
We get rid of parentheses
W+61/3W-30=0
We multiply all the terms by the denominator
W*3W-30*3W+61=0
Wy multiply elements
3W^2-90W+61=0
a = 3; b = -90; c = +61;
Δ = b2-4ac
Δ = -902-4·3·61
Δ = 7368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$W_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$W_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7368}=\sqrt{4*1842}=\sqrt{4}*\sqrt{1842}=2\sqrt{1842}$
$W_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-2\sqrt{1842}}{2*3}=\frac{90-2\sqrt{1842}}{6} $
$W_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+2\sqrt{1842}}{2*3}=\frac{90+2\sqrt{1842}}{6} $

See similar equations:

| x+(x+1.8)+(x-1.8)=29.4 | | 56+74=x | | 4c-12=c-3 | | 5(1x+7=40 | | c-2.52.5=c | | 53+74=x | | (X+1.8)+(x-1.8)=29.4 | | 0.4(m+5)+0.3=0 | | x-335+x+80+2x=2425 | | 1/3k=1/4 | | y-55=2y-132 | | 5(3+v)+36v=11v | | x=1/2-2/3x | | 84+58=x | | 5^x-2=3^3x-2 | | (√x+7)-1=x | | 14k+11=k | | 2x/4-4x+9/6=5 | | 89+42=x | | 2k+1=-7k=55 | | 5y+4y=20 | | 9+6+2d=4d+9 | | 78=18-5t | | C=1.50t+5 | | 2x+1/3x+4=2x-8/3x+8 | | -(x+8)+2x-4=6 | | 9x+11=146 | | 3(2x+1)^1/3=9 | | 5x-3+4x-8=146 | | n+37=-4 | | p–5=-2p+29=2p–21 | | 2(2x-54)+2x-20=180 |

Equations solver categories