If it's not what You are looking for type in the equation solver your own equation and let us solve it.
W2+(22W^2)=120
We move all terms to the left:
W2+(22W^2)-(120)=0
determiningTheFunctionDomain 22W^2+W2-120=0
We add all the numbers together, and all the variables
23W^2-120=0
a = 23; b = 0; c = -120;
Δ = b2-4ac
Δ = 02-4·23·(-120)
Δ = 11040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$W_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$W_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11040}=\sqrt{16*690}=\sqrt{16}*\sqrt{690}=4\sqrt{690}$$W_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{690}}{2*23}=\frac{0-4\sqrt{690}}{46} =-\frac{4\sqrt{690}}{46} =-\frac{2\sqrt{690}}{23} $$W_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{690}}{2*23}=\frac{0+4\sqrt{690}}{46} =\frac{4\sqrt{690}}{46} =\frac{2\sqrt{690}}{23} $
| 3(x+2)/4=2x-2 | | 40+b=10 | | 256-y=140 | | y=55+0.15(64.75) | | 1/2x-3/4x-8=-7 | | 0.2(5x+12)=18 | | x+80=2x+50 | | 18/21=x/7 | | 3x+70=4x | | 5y²+15y=0 | | √(6v−3=√(8v−15 | | b₂=32 | | 2(3x-1)+x=6x+2 | | 2/3(x-1)-3/4x=5/6 | | 27-y=14,13 | | 1/5x-2/5-1/2x=0 | | 70=4y+10 | | 5(w+3)=-3w+23 | | 5+2(y-4)=4y+22 | | 4(7+1.5y)+(-6y)=28 | | -x/5=15/1 | | 46+n=81 | | 13=1-6w | | 16y-40=0 | | 6x+9=10+6x | | 26=7(g-9)+1226=7(g−9)+12 | | 258=9-x | | 5x+(17x-18=180 | | x/17=9 | | 10x=148 | | -8p-p=-9 | | 5(x+6)-2x=3(x-10) |