If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(3-1/X)+1=3(X+1)-7
We move all terms to the left:
X(3-1/X)+1-(3(X+1)-7)=0
Domain of the equation: X)!=0We add all the numbers together, and all the variables
X!=0/1
X!=0
X∈R
X(-1/X+3)-(3(X+1)-7)+1=0
We multiply parentheses
-1X^2+3X-(3(X+1)-7)+1=0
We calculate terms in parentheses: -(3(X+1)-7), so:We get rid of parentheses
3(X+1)-7
We multiply parentheses
3X+3-7
We add all the numbers together, and all the variables
3X-4
Back to the equation:
-(3X-4)
-1X^2+3X-3X+4+1=0
We add all the numbers together, and all the variables
-1X^2+5=0
a = -1; b = 0; c = +5;
Δ = b2-4ac
Δ = 02-4·(-1)·5
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*-1}=\frac{0-2\sqrt{5}}{-2} =-\frac{2\sqrt{5}}{-2} =-\frac{\sqrt{5}}{-1} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*-1}=\frac{0+2\sqrt{5}}{-2} =\frac{2\sqrt{5}}{-2} =\frac{\sqrt{5}}{-1} $
| 8x-4=5x-10 | | 3-(x+2)=6 | | y=10•3^2-7•3-12 | | F(4c)=8-5(4c) | | x+(x+6)+3(x+6)=149 | | 28=34-31w | | 2/3(6x+9)-8=1 | | 28=34-11w | | 28=34-5w | | 200p-5000/200p=3 | | -12+l=18 | | 9x+x=9x-4 | | 28=34-4w | | 5n-8(-2n-3)=-81 | | 7y-2=20y+115 | | 20x=-5(2x-6) | | -7(1+7x)=-399 | | 1/210h=40 | | 100=7=4x+10 | | -4x+3(2x-5)=-16 | | 2d=6+5d | | 7/4x=-7/5 | | 6z^2+1=2z^2 | | 2=100=7=4x+10 | | 14x^2=28x | | 1-(5/6)^n=0.9 | | 10y-9=41 | | (6x+1)=(6x-9) | | 5x-4=11x-2=90x | | 9x*x-6x+1=0 | | 11x+22=9x-3 | | 122x+135(x-30)=500 |