If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X+1)=30000
We move all terms to the left:
X(X+1)-(30000)=0
We multiply parentheses
X^2+X-30000=0
a = 1; b = 1; c = -30000;
Δ = b2-4ac
Δ = 12-4·1·(-30000)
Δ = 120001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120001}=\sqrt{49*2449}=\sqrt{49}*\sqrt{2449}=7\sqrt{2449}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-7\sqrt{2449}}{2*1}=\frac{-1-7\sqrt{2449}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+7\sqrt{2449}}{2*1}=\frac{-1+7\sqrt{2449}}{2} $
| 45=2b+3(17-b) | | 2+n=93 | | 17=2b+3(45-b) | | 50-5x=17.50 | | 7x-9=-8x+1-x | | 17=2b+3(17-b) | | 1/2x+6=7-1/2 | | 5x-2(-5+2x)=14 | | 17=(45-x)/2+x/3 | | 5x+17.50=50 | | G(x)=10^x | | x+3x+-17+7x+10=180 | | 0.8x=2700 | | 0=-16t^2+22.1 | | -3(a-2)+1=20 | | -2=6+2y | | 21x-2+7x-10=180 | | 9=x+x+x | | 3(x−1)+2=8 | | 3x+2=4x-+ | | -3/7y+8=-2/3 | | f(-7)=8(-7)+15 | | x^2+3.5x+12.25=-2 | | 3r-5=2(4r-9)r= | | 2-4c=18 | | 3x^2-70x-2000=0 | | 3p=(p+2) | | P=8(1.23)t | | 4x-4=1/49 | | 3x^2+6x+4=-4 | | 3/2x+3/2=-1/2 | | 5y+10=10y |