If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X+12)48=180
We move all terms to the left:
X(X+12)48-(180)=0
We multiply parentheses
48X^2+576X-180=0
a = 48; b = 576; c = -180;
Δ = b2-4ac
Δ = 5762-4·48·(-180)
Δ = 366336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{366336}=\sqrt{2304*159}=\sqrt{2304}*\sqrt{159}=48\sqrt{159}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(576)-48\sqrt{159}}{2*48}=\frac{-576-48\sqrt{159}}{96} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(576)+48\sqrt{159}}{2*48}=\frac{-576+48\sqrt{159}}{96} $
| 24=4(w-4)-8w | | 3y8=-2 | | 8u-6u+4u-u-2u=18 | | 8x-6=3x+16 | | 12.5-6g=-2g-3.5 | | −7x−1=−7x−1= −9x−17−9x−17 | | 2j-2j+3j=9 | | 3x-5x=-8-32 | | 10=3-7u | | 5x-8=16-7x | | 12g+4g-10g-5g+2g=15 | | .5x+8=1x | | -1/4y-6=-11 | | -¼y-6=-11 | | 2j-j-j+j=2 | | 1=5w+6 | | m/(-5)=-25 | | m÷(-5)=-25 | | 15z=8*3 | | 15g=6(4+3g) | | 11d-4d-5d=10 | | 4x−6=4x+3 | | 2(x+3.5)=17 | | 36x^2-47=0 | | 7-4v=3 | | 6u-4u=14 | | 9k-8k=13 | | (9x+2)=61 | | 14x+8=21x+2 | | -3a+14+8a=5a-7a | | |6x|+9=12 | | 6h-2h=8 |