If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X+12)=133
We move all terms to the left:
X(X+12)-(133)=0
We multiply parentheses
X^2+12X-133=0
a = 1; b = 12; c = -133;
Δ = b2-4ac
Δ = 122-4·1·(-133)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-26}{2*1}=\frac{-38}{2} =-19 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+26}{2*1}=\frac{14}{2} =7 $
| x²-6x-160=0 | | 7x+39=6x+33 | | 30=z6 | | d20=31 | | 5=2.5^x | | -13j=-117 | | 1/3(6x+18)=-12 | | 8x+7-3x-22=17-3x+4-5x+3 | | 65=1.5/5x+5 | | 40t+70(t-1)=260 | | 4x-8=-1x+19 | | x/24*x=6 | | 4x-15=7x-6 | | (21/26)y=7 | | 3+1/3+x=6+3/4 | | 4x*5/3=11 | | 32=-4q+8 | | 4{x-3}=5 | | 3x+6+2x-6+x=180 | | n-1/6+n+1/7=19/21 | | 2/3g+5=-4-1/3g | | 5x^2+4x-273=0 | | 2+18-15x=50 | | -25.15x=-125.75x | | 2(t-3)=28 | | 7x+x+40+2x=180 | | 8x+4=–20 | | -6(1-6k)+5=-1+3k | | 1-2n=5n-6 | | -6(1-6k)+5=-1+4K | | 5x=7.2 | | 3p^2-13p+14=0 |