If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X+12)=560
We move all terms to the left:
X(X+12)-(560)=0
We multiply parentheses
X^2+12X-560=0
a = 1; b = 12; c = -560;
Δ = b2-4ac
Δ = 122-4·1·(-560)
Δ = 2384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2384}=\sqrt{16*149}=\sqrt{16}*\sqrt{149}=4\sqrt{149}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{149}}{2*1}=\frac{-12-4\sqrt{149}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{149}}{2*1}=\frac{-12+4\sqrt{149}}{2} $
| (5y-3)*y=36 | | -4b+5=4-5b | | 3/(3x-2)=0 | | n^-2÷3=9 | | -7-1p=-2p | | 5/t=15 | | 682/j=22 | | ⅓(3x-2)=0 | | 5x+-22+-7x=14x+15 | | 405-s=223 | | (11-x)+2x=-20 | | 8y+15=180 | | -8c+2=2+6c | | 3a-a=0 | | 9u-5=8u | | 12+2x=24-4xx= | | 11-x+2x=-20 | | 297-u=273 | | -4d+7=1-3d | | 5y+4=-3y | | 2=1+r9 | | 96=10p-4 | | 1•4x-3=-2x | | 10-3p=-44 | | 8a-12=2a+36 | | –4v=56 | | 27(b-961)=513 | | 8-3x=2+x | | 19(r+28)=798 | | 7x+9=-3x+109 | | 2=9(4+10w) | | 2.32(1d-7)=2.32 |