If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X+2)=144
We move all terms to the left:
X(X+2)-(144)=0
We multiply parentheses
X^2+2X-144=0
a = 1; b = 2; c = -144;
Δ = b2-4ac
Δ = 22-4·1·(-144)
Δ = 580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{580}=\sqrt{4*145}=\sqrt{4}*\sqrt{145}=2\sqrt{145}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{145}}{2*1}=\frac{-2-2\sqrt{145}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{145}}{2*1}=\frac{-2+2\sqrt{145}}{2} $
| 4-2x=2x-6 | | 25^2=125^x | | 7x+5/3=x+3 | | (-8)^-2=x | | 5x+90=5(2+5x) | | 4x+90=5(2+4x) | | 5x+1=2(2+2x) | | 2x+70=5(1+3x) | | 5x+17=4(2+2x) | | 5x+5=3(1+2x) | | n2=-14n-37 | | (-7+i)/(8+9i)=0 | | C=-17x-1x^2 | | -6x^2-6x-72=0 | | 2x+48=4(2+3x) | | 7+2(x+6)=39 | | (3+8i)/(-1-6i)=0 | | (6x-1)+(x)=90 | | 9x+4=176 | | 5x+22=2(1+5x) | | 4x+52=5(2+5x) | | 7x(1+4)=35 | | 4x+36=3(1+5x) | | 10x+48=-8 | | (25/2)x^2+15x+(9/2)=0 | | 5x+45=5(1+3x) | | 4x-20=4(x+5) | | 8x-14=2x+2 | | 8^(2x)=32 | | 8^x=6.5 | | 5+4z=6z+11 | | 2(3z+1)=–2(z+3) |