If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X+20)=30
We move all terms to the left:
X(X+20)-(30)=0
We multiply parentheses
X^2+20X-30=0
a = 1; b = 20; c = -30;
Δ = b2-4ac
Δ = 202-4·1·(-30)
Δ = 520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{520}=\sqrt{4*130}=\sqrt{4}*\sqrt{130}=2\sqrt{130}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{130}}{2*1}=\frac{-20-2\sqrt{130}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{130}}{2*1}=\frac{-20+2\sqrt{130}}{2} $
| 3n+17+5n+11=180 | | 6x+5=5x+37 | | 2/5x+3/5x+x+30+x=360 | | 3m^+7=301 | | 82=-x+187 | | 4(x+7)=90 | | 5g-2g+g+5g=18 | | 90+x+2x+2=180 | | 30+60=20x | | 2x+(-10)=4 | | 189-x=22 | | 3x-11=34/2x | | 2x+(−10)=4 | | n+3=2(n+2)-3n | | 3x-x/2=4 | | 5+(6p+5)=-25+5p | | -x+88=188 | | (2x-2)=45-x | | 55d=440 | | 107=-v+229 | | 7500=1.5x | | 6x+15=-6 | | 3x=2x=90 | | 15x+22=-7x-22 | | 6x+15=−6 | | S(t)=4-2t | | 4x+10-2x=2(2x+3) | | 5=174=-w | | 6^x+1=70 | | f(-3)=(-3)+7 | | -u+57=176 | | 4.2x-10.82=6.4 |