If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X+20)=96
We move all terms to the left:
X(X+20)-(96)=0
We multiply parentheses
X^2+20X-96=0
a = 1; b = 20; c = -96;
Δ = b2-4ac
Δ = 202-4·1·(-96)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-28}{2*1}=\frac{-48}{2} =-24 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+28}{2*1}=\frac{8}{2} =4 $
| ?+12-3d=5d+6 | | 5=p+18 | | 4(p-79)=52 | | 4(2x+2)=2(4x-12) | | 3x-8=2(x-2) | | 6w+8=-12 | | 4.8=2(x-5)+6x | | -7|8k=-21 | | 1-4(a+1)=7+a | | 1+2/3=(11+2/3)n | | 4(2x=2)=2(4x-12) | | 16=6+5(x-5) | | -20u-15=-19u | | -7+6x=-1x+8 | | 3x-11=-10 | | 12/3=112/3x | | (x-4)^2-10(x-4)-11=0 | | 2x-6x-9=-4x+7-9 | | t÷2+3=18 | | -10c+5=19-3c | | 3(x−3)−2x−4= −21 | | 17/4a+7/2=11 | | 2x=0.875x-15 | | 6x-4-2x=6x-23 | | -12b=-15b+12 | | 1.2(6x-8)=3x+7 | | 4(x-16)=-35 | | -3r+9+9=6r-9 | | 41/2a+31/2a=11 | | -9x+3x-6x=0 | | 6=s+14/5 | | 207=2.7(x) |