X(x+2x)=8(8+x+4)

Simple and best practice solution for X(x+2x)=8(8+x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X(x+2x)=8(8+x+4) equation:



X(X+2X)=8(8+X+4)
We move all terms to the left:
X(X+2X)-(8(8+X+4))=0
We add all the numbers together, and all the variables
X(+3X)-(8(X+12))=0
We multiply parentheses
3X^2-(8(X+12))=0
We calculate terms in parentheses: -(8(X+12)), so:
8(X+12)
We multiply parentheses
8X+96
Back to the equation:
-(8X+96)
We get rid of parentheses
3X^2-8X-96=0
a = 3; b = -8; c = -96;
Δ = b2-4ac
Δ = -82-4·3·(-96)
Δ = 1216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1216}=\sqrt{64*19}=\sqrt{64}*\sqrt{19}=8\sqrt{19}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{19}}{2*3}=\frac{8-8\sqrt{19}}{6} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{19}}{2*3}=\frac{8+8\sqrt{19}}{6} $

See similar equations:

| 94=29x-1 | | f/6−3=1 | | x-2(2-3x)=9+5(3x-1)= | | 8+x=16A | | 5x+12/3x+x=180 | | x+3/4=7/1/2 | | f6− 3=1 | | 8y+4=4(y+7) | | −16+k=−11 | | 135=29x-1 | | 24r=3 | | 2,4=3x-4,2 | | 2(4-m)=5 | | 12(12.5)=x(18.6) | | 4=y+2y+5+2 | | 1/2x-12=-50 | | u/6=11/7 | | 2,4=3x-4,2. | | z/5-4=25/4 | | 5x+2/3x+x=180 | | 15(x+1)=5(2x+1) | | 46=5v-14 | | -2+20y=180 | | 31=68(0.5)^t/8+14 | | 2.75x+15.25=23.50 | | 0.2/n+0.8=1.2 | | 8y-2+12y=180 | | 15.25x+2.75=23.50 | | 120+8x=7x | | 5/7(14/1x7/2-35)=10 | | 3/2+n/4=5/6-1/2 | | 7x+120=8x |

Equations solver categories