If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X+4)=23
We move all terms to the left:
X(X+4)-(23)=0
We multiply parentheses
X^2+4X-23=0
a = 1; b = 4; c = -23;
Δ = b2-4ac
Δ = 42-4·1·(-23)
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-6\sqrt{3}}{2*1}=\frac{-4-6\sqrt{3}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+6\sqrt{3}}{2*1}=\frac{-4+6\sqrt{3}}{2} $
| x^2+197x-5000=0 | | 64÷2x=8 | | 216=(x+6)*x | | x^2+12=216 | | 75+2x=5.75x | | 50+2x=4.00 | | 10=((t*t)-t)/2 | | 3x^2+6x=1/3 | | 10=t^2-t/2 | | -3(4x-2)=-6(2x-4) | | (17x+4)+(19x-2)=180 | | 10-t^2+t*2=0 | | 0=32t^2+40t-48 | | 32t^2+40t-48=0 | | R(n)=0.25n0.75+0.25n. | | 20.7+n=9 | | X+30=x-10=x+10=2x | | -4x+2=-3x-4 | | 2a+9=9+5 | | u^2+6u+3=0 | | 3*4^(3x-6)+2=35 | | 3(4)^(3x-6)+2=35 | | 2x-2+2x+8=90 | | 7/3+x=3 | | Y-20=180°-y | | 39x-3=15 | | -2x-x=-7-2 | | 6(9-x)-3(8x-3=6x-9 | | 2^x=4+2x | | 2^x=+2x | | v+6/v+3=(v-5/v-3)+1 | | 6x-14=4x+1 |