If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X+5)=80
We move all terms to the left:
X(X+5)-(80)=0
We multiply parentheses
X^2+5X-80=0
a = 1; b = 5; c = -80;
Δ = b2-4ac
Δ = 52-4·1·(-80)
Δ = 345
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{345}}{2*1}=\frac{-5-\sqrt{345}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{345}}{2*1}=\frac{-5+\sqrt{345}}{2} $
| 2y+2+2=24 | | -3-1=t | | x^2+2x-50=2x+50 | | 2=1/2n+5 | | 24x/3x=8 | | 24-5a=a | | (x+51/0.75=5/8 | | 6s-5=18 | | 18+2=y | | 44=7(1)+7(-3+6/7)+4(y) | | 5(6x+4)=200 | | 6s-3=6 | | 2/3c-10=2 | | 30=12n | | j/4-10/3=1/3 | | 5x=3x=18 | | 44=7(1)+7(x) | | 34+5y-11=15y-9-2y | | 8-k+2(4-2k=k+2k | | 1x-6=12 | | 9/10z-4=-19/20z+1 | | -1=12+p | | 7x²-60x-27=0 | | d/5+3d-10=1/3d+33 | | -y+2/15=5/9 | | (1/3y)+3=(1/7y) | | 6m-4=-16 | | (1/3)y+3=(1/7)y | | (y+9)20=140 | | 109=5u+9 | | -28=7(m+3) | | 13y+3=17y |