If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X-1)=200
We move all terms to the left:
X(X-1)-(200)=0
We multiply parentheses
X^2-1X-200=0
a = 1; b = -1; c = -200;
Δ = b2-4ac
Δ = -12-4·1·(-200)
Δ = 801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{801}=\sqrt{9*89}=\sqrt{9}*\sqrt{89}=3\sqrt{89}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-3\sqrt{89}}{2*1}=\frac{1-3\sqrt{89}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+3\sqrt{89}}{2*1}=\frac{1+3\sqrt{89}}{2} $
| 2−7u=-5u+6 | | 7r+21=44r | | 5r+10=-5+2r | | 29=257-x | | 4k+10=5k | | 10r=8+8r | | 14+25f=35+16f | | -12p39=11(p+14) | | -2−6v=-5v | | (d/5)+3D-10=(1/3)d+33 | | D/5+3D-10=(1/3)d+33 | | 1/6y-4=-11 | | -3b=-2b−9 | | 2h=h−8 | | 1+8x+3=-12 | | -13=5x+8x | | -9y=-8−8y | | -y=8+3y | | 7m=6m+8 | | -10−1=9w | | -10−w=9w | | -4u+8=-2u | | 4y−1=35 | | -17=1+9x | | 10y=250 | | 0=4x+3x | | 4^x-3=18 | | 0.18-0.02(x+3)=-0.02(2-x) | | 6n+3=–9 | | y=4-6/5 | | x=7=14 | | 2(6q2=q)-3q |