If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X-1)=588
We move all terms to the left:
X(X-1)-(588)=0
We multiply parentheses
X^2-1X-588=0
a = 1; b = -1; c = -588;
Δ = b2-4ac
Δ = -12-4·1·(-588)
Δ = 2353
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{2353}}{2*1}=\frac{1-\sqrt{2353}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{2353}}{2*1}=\frac{1+\sqrt{2353}}{2} $
| Y=3x^2+6x-13 | | -3-12q=-13-13q | | -1-9y=-8-10y | | 2x+11=43-6x | | 80=5y+15 | | -1–9y=-8–10y | | Y=3x^2+2x+12 | | -7f=6f-10 | | 2(2x-4)=-3(8x-4) | | 1/2x=9/10 | | 11(2x+8)=121 | | -7f=-6f–10 | | X+(x•.06875)=10 | | (-42x+30)/12=0 | | x+1÷4=1/6+2-x÷3 | | X(1-x)=588 | | 1/3(4x-9)=8x+12 | | -7u-2u-8=-7u+8 | | 3(y-7)+6y=15 | | 3x-9-5x=-17 | | Y=4x^2-36x+81 | | 1(4-u)-13(6-u)=0 | | 5432=5333,33/x | | -3–12q=-13–13q | | 5x=+2=12 | | .5(4x-8)+3=36 | | -45=3m=-60 | | 133=7(1+2v) | | 15z–14z=8 | | 5432=5333,33/x*1 | | -8t=-9t-9 | | -8t=-9t–9 |