X(x-15)+x+(x-2)=120

Simple and best practice solution for X(x-15)+x+(x-2)=120 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X(x-15)+x+(x-2)=120 equation:



X(X-15)+X+(X-2)=120
We move all terms to the left:
X(X-15)+X+(X-2)-(120)=0
We add all the numbers together, and all the variables
X+X(X-15)+(X-2)-120=0
We multiply parentheses
X^2+X-15X+(X-2)-120=0
We get rid of parentheses
X^2+X-15X+X-2-120=0
We add all the numbers together, and all the variables
X^2-13X-122=0
a = 1; b = -13; c = -122;
Δ = b2-4ac
Δ = -132-4·1·(-122)
Δ = 657
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{657}=\sqrt{9*73}=\sqrt{9}*\sqrt{73}=3\sqrt{73}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-3\sqrt{73}}{2*1}=\frac{13-3\sqrt{73}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+3\sqrt{73}}{2*1}=\frac{13+3\sqrt{73}}{2} $

See similar equations:

| (6x+8)/(9x+6)=4 | | 5x+6-6=25 | | X(x-15)+x+x-15=120 | | x(x^2+4x)+(x+1)(x-2)=(3x+5)(x-1) | | x/3+9=45 | | 300x^2-50x+10=0 | | 7+y=y+7 | | 1/3x=60;x= | | 4x²+14x-8=0 | | (x+1)^2-(x-1)^2=x^2 | | P^2+2p-9=0 | | 3x-4=2x-15 | | 5e/2-7=23 | | 3/4+z=-2/3 | | 7/2+z=-1/3 | | 1/2+z=3/4 | | x(x-15)+x+x-2=120 | | X+8=3+2(x+8) | | 5p-2p=13 | | 5+4x(x)=59 | | x=3+2*(-1) | | 3y+11÷1=2 | | 6x-12=12-3x | | 5(3+2y)+y=4 | | 3=0.13x | | 5x=40x^-(1/2) | | (3x+2)(x+2)+(-x-2)3=0 | | 3.43x=27.44 | | 1/8x1/2=1/4 | | 100x+18×x=1239 | | 5/7(12,6-2,8x)=3,6(5/9-3/4x) | | x-8/x-5=7/8 |

Equations solver categories