If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X-3)-18900=0
We multiply parentheses
X^2-3X-18900=0
a = 1; b = -3; c = -18900;
Δ = b2-4ac
Δ = -32-4·1·(-18900)
Δ = 75609
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{75609}=\sqrt{9*8401}=\sqrt{9}*\sqrt{8401}=3\sqrt{8401}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3\sqrt{8401}}{2*1}=\frac{3-3\sqrt{8401}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3\sqrt{8401}}{2*1}=\frac{3+3\sqrt{8401}}{2} $
| X(x-3)-5670=0 | | x+7)+5=13 | | y+4.2=9.29 | | 0=5x^2-36x+15 | | v-9.92=4.1 | | 2368=41t+58t-95t | | 3(5)^x-22=41 | | 21=3e | | 3a-15=2a-11 | | 10x(4x+7)=0 | | 16=x/2+8 | | 2-x=1÷4(5-x)-1÷5(4x-5) | | |6x-9|=33x | | 2-x=1/4(5-x)-1/5(4x-5) | | -6n+17=-5n-7 | | 5/6+m=2/9 | | 7x^2+2(9-x)^2=0 | | 4(x-7)=2x+2 | | 5x+17x-44x=270 | | -8h-13=11 | | 10(4x^2+7)=0 | | 18x+6=3(6x+2 | | 6(7-x)-(x+5)=8+8(x-2) | | 2=-11+v | | 6=v/3+9 | | 9(x-5)-5(x-2)+6x=0 | | -1=4s | | n-1220=n | | -4x+5=5+4x | | x^2-4x-4x+16+x^2=-12x-20 | | 2x-15=123 | | 4÷3=5y-2÷2y+2 |