If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X-42)=180
We move all terms to the left:
X(X-42)-(180)=0
We multiply parentheses
X^2-42X-180=0
a = 1; b = -42; c = -180;
Δ = b2-4ac
Δ = -422-4·1·(-180)
Δ = 2484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2484}=\sqrt{36*69}=\sqrt{36}*\sqrt{69}=6\sqrt{69}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-6\sqrt{69}}{2*1}=\frac{42-6\sqrt{69}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+6\sqrt{69}}{2*1}=\frac{42+6\sqrt{69}}{2} $
| 16t-(4t-6)=18 | | 2x2=14 | | 1.5x+13x=-84 | | 0.3x+0.6=0.5x-1.2 | | 1064=(20+x)*(30+x) | | 2x+4+3x=10 | | 3v^2+35v+49=8v | | 14-(2÷3)x=6 | | Y=x/(9x^2-4) | | (q+(-5)/3=8 | | 2/7x+1/4=1/3-5/7x+1/3 | | (x^2)+50x-462=0 | | 5(1+2m)=(1÷2)(8+20m) | | -5(6x-2)+6=30x+16 | | -5n+15-8n=n-67 | | 3b^2-3b-18=0 | | x^2+50x-462=0 | | 25+0.25p=55 | | 10-7x=-2x-2(3x-1) | | X^=25x | | 5m²+20m+20=0 | | 10x−83−4x=6x10x−83−4x=6x | | -1/3y+1/11=13/33 | | 4=t/9 | | X+1.5x+1.5x+2x=x+2x | | -n+4+21n=9 | | -8/5=-1/3v-5/2 | | 184=-5(4+6n)-4n | | 8x=-2x | | 89=11^x | | r^2-r+2=4 | | 8n−15=41 |