If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X-9)=45
We move all terms to the left:
X(X-9)-(45)=0
We multiply parentheses
X^2-9X-45=0
a = 1; b = -9; c = -45;
Δ = b2-4ac
Δ = -92-4·1·(-45)
Δ = 261
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{261}=\sqrt{9*29}=\sqrt{9}*\sqrt{29}=3\sqrt{29}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-3\sqrt{29}}{2*1}=\frac{9-3\sqrt{29}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+3\sqrt{29}}{2*1}=\frac{9+3\sqrt{29}}{2} $
| 16y+3=15 | | 4y-7+2y=3(y-1)1 | | 3(3x+5)=6x-30 | | 4t-7=3t | | 8.5=6.5(3d-3)+d | | 4x+x+15+x=3x+5 | | 2x+2=52 | | 12x=8 | | -3(0-6)=-3x+23 | | 36x+4x=160 | | x=(-2x+5)(3x-4) | | F(0.5)=-4x+10 | | 88x+x=180 | | -96=8p | | -179+12x=100+3x | | -8p+5=-7p | | 10-2x=19=2-5x | | 0.25(8x+12)=-85 | | 20n-17n+3n=18 | | (3/4)x+(2/8)x=48/8 | | -50+8x=6(1+6x) | | 6x+10=5x-13 | | 3+9y=-9 | | (5x+2)=3(x+8) | | -30-5x=-5(x+8)+4 | | -8p+5=7p | | 360=4x+45 | | 2x+25+4-5x+4-5x=180 | | 3(w+4)=-6(4w-1)+9w | | 5+3n=22 | | 3x-15=1x-12 | | -1=n-1+6n |