X(y-4)+4y=2598

Simple and best practice solution for X(y-4)+4y=2598 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X(y-4)+4y=2598 equation:



X(X-4)+4X=2598
We move all terms to the left:
X(X-4)+4X-(2598)=0
We add all the numbers together, and all the variables
4X+X(X-4)-2598=0
We multiply parentheses
X^2+4X-4X-2598=0
We add all the numbers together, and all the variables
X^2-2598=0
a = 1; b = 0; c = -2598;
Δ = b2-4ac
Δ = 02-4·1·(-2598)
Δ = 10392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10392}=\sqrt{4*2598}=\sqrt{4}*\sqrt{2598}=2\sqrt{2598}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2598}}{2*1}=\frac{0-2\sqrt{2598}}{2} =-\frac{2\sqrt{2598}}{2} =-\sqrt{2598} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2598}}{2*1}=\frac{0+2\sqrt{2598}}{2} =\frac{2\sqrt{2598}}{2} =\sqrt{2598} $

See similar equations:

| 2x-3=1/2(2x+6) | | 3-2x+4x+6x=9 | | 5x^2-44x+150=11x | | 3-2x+4x+6x=8 | | 25x-6=10x+86 | | (y/5)^2=121 | | 2.6*v=7.5 | | 7x+82=348 | | 7x+84=348 | | 16w+7w-5w=0 | | 7x+86=348 | | 2.5x-1=10-7.5x | | −94v+45=78−94v+45=78 | | 7x+88=348 | | d=1.5+2.75 | | x^2+20x-4.0=0 | | 2k+8=4k | | 6x^2-18x+18=6 | | 7x+90=348 | | 16z-12z+3z-5z+3z=10 | | 2/3(x+2)=1/6x+1/3 | | 160=(x+8)(x+6) | | 3.6=w9 | | 2x+60=4x-120 | | 5m-14=18 | | d+6−2=5d+6−2=5. | | Y+4=-6(x+2) | | -3/4x+44=-31 | | Y+2-3x=0 | | x-3/2=-3 | | 10x-8=9x-16 | | f~-12.3=-73.8 |

Equations solver categories