If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(18-X)=54
We move all terms to the left:
X(18-X)-(54)=0
We add all the numbers together, and all the variables
X(-1X+18)-54=0
We multiply parentheses
-1X^2+18X-54=0
a = -1; b = 18; c = -54;
Δ = b2-4ac
Δ = 182-4·(-1)·(-54)
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{3}}{2*-1}=\frac{-18-6\sqrt{3}}{-2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{3}}{2*-1}=\frac{-18+6\sqrt{3}}{-2} $
| 4x+29=42 | | 3x+36=540 | | 2x+22=41 | | 3/5(2+x)=12 | | 3k^2−10k+7=0 | | (3x-2)/2=x+3 | | 3k^2−10k=−7. | | 3k2−10k=−7 | | (3k-7)(k-3)=0 | | 2/5xx=18 | | 6x-13-x=2 | | t^2−9t+20=0 | | t2−9t+20=0 | | |5u-15|=10 | | 72c=12c= | | x2-80=-2x | | n+(n+1)+(n+2)=-3 | | 7/x+5=57 | | 3^(2x+3)=25 | | (2x)^x=25 | | 2(w+3)–10=6(32–3w) | | 3x+6+2x+19=24 | | (3/25)=(x/20) | | -n2-16n=-12-2n2+4n | | (0.35)/(2/3x)=(0.45)/(x-10) | | (5x+5)-2x=2(x+3) | | 5x-26=-41 | | 2x+5-7x=10 | | 5(x-2)+4(x-1)=4 | | 3/4x+5=2/3x-2 | | x2+14x-66=6 | | -7x=5-2(-2x-3) |