If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X(X+6)=150
We move all terms to the left:
X(X+6)-(150)=0
We multiply parentheses
X^2+6X-150=0
a = 1; b = 6; c = -150;
Δ = b2-4ac
Δ = 62-4·1·(-150)
Δ = 636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{636}=\sqrt{4*159}=\sqrt{4}*\sqrt{159}=2\sqrt{159}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{159}}{2*1}=\frac{-6-2\sqrt{159}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{159}}{2*1}=\frac{-6+2\sqrt{159}}{2} $
| 32.8d+152=-583 | | -6.3n=18.9 | | 3(5x-8)=2(5x-2) | | -x+3.7=-2.3+3 | | 2(x+4)=9x+1 | | x/4=(x-1)/2 | | 7x+3=11x-17 | | 2y-(7-5y)=0 | | k/82=-123 | | 5^2x+1=1/25 | | b/8+1/9=11 | | -a/63=-167 | | 4d+2d-4d+4=3d=4d | | 40+13x+3=17x+7 | | 38+6x-10=7x+18 | | 26+2x+7=6x-7 | | 2.3x-6=9 | | x=17*7 | | 7x+12+17x=180 | | 130=20x+10 | | 4c+12=7c+9.84 | | 4x-3/2=1 | | 10x+10+11x+1=180 | | (5x+3)/2=x+6 | | 19*5+5=x | | 16x+19x+5=180 | | 3(2x-3)+5=2(3x-2) | | 98=2(w+15)+2w | | 180-1.5×b=45 | | 40*160*x=32 | | 160x=32 | | 160x=4 |