X*y+(X*y)=145

Simple and best practice solution for X*y+(X*y)=145 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X*y+(X*y)=145 equation:



X*X+(X*X)=145
We move all terms to the left:
X*X+(X*X)-(145)=0
We add all the numbers together, and all the variables
X*X+(+X*X)-145=0
Wy multiply elements
X^2+(+X*X)-145=0
We get rid of parentheses
X^2+X*X-145=0
Wy multiply elements
X^2+X^2-145=0
We add all the numbers together, and all the variables
2X^2-145=0
a = 2; b = 0; c = -145;
Δ = b2-4ac
Δ = 02-4·2·(-145)
Δ = 1160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1160}=\sqrt{4*290}=\sqrt{4}*\sqrt{290}=2\sqrt{290}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{290}}{2*2}=\frac{0-2\sqrt{290}}{4} =-\frac{2\sqrt{290}}{4} =-\frac{\sqrt{290}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{290}}{2*2}=\frac{0+2\sqrt{290}}{4} =\frac{2\sqrt{290}}{4} =\frac{\sqrt{290}}{2} $

See similar equations:

| 1/2r=3/6 | | 9x-23=7x-11 | | 2x+42=-3x+2 | | 5x-10+2x-1+x=180 | | 15x-15=12x+12 | | 8.1+w/7=-3.1 | | 6^-2b=6^2 | | 2/3x+5=2 | | -u+234=37 | | 6x-2+9x=5x+4 | | (2/x)=12.42 | | 12.08=2.6x+4.8 | | 92-v=278 | | b*8=54 | | 9÷t=-27 | | 55=4v | | 2(2x+4)=5(x-10) | | (2500)^2=(x)^2+(1666)^2 | | 100=6a+4-9a+a | | -6v+8v=4(-7-3v)-5(-7v+7) | | x/1=81 | | x+x+38=66 | | 4y+2y-7=2+4y+5 | | 8/y+2=7/5 | | XxY=81 | | y-815/7=14 | | 8x+5-×=-2 | | 3.75x+3.7=1.75x+1.7 | | 2x4+x3+16x+8=0 | | 256^2x-2=64^3x-1 | | 3-6x+8x=-2 | | 2500^2=x^2+1666^2 |

Equations solver categories