If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X*X=162
We move all terms to the left:
X*X-(162)=0
Wy multiply elements
X^2-162=0
a = 1; b = 0; c = -162;
Δ = b2-4ac
Δ = 02-4·1·(-162)
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{2}}{2*1}=\frac{0-18\sqrt{2}}{2} =-\frac{18\sqrt{2}}{2} =-9\sqrt{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{2}}{2*1}=\frac{0+18\sqrt{2}}{2} =\frac{18\sqrt{2}}{2} =9\sqrt{2} $
| 9x+6=99 | | 7x+99=162 | | 3x-5/10+2x+6/2=5x+9/5 | | 10=4(x+2)+2 | | 4x-2x=3+5 | | -5+x+5=23 | | 0=-2x+4x | | (2x+3)/2=0 | | b–6=5 | | 33-2(3x+4)=-18x | | 2(x-2)^2(x-4)^2=8 | | 1x*2x=64 | | 0=45+(m+7)3 | | 16^x-12*4^x+32=0 | | x²-106=-25 | | -9x+7=45 | | - 3/5d=15 | | 3(6+4g)=2(6g+9) | | 346.5=22/7×r2 | | 5x×(3x-1)=120 | | 4/(-5+z)=16 | | 2x=4=0 | | 2^x=240 | | x-1.75=15 | | 10a-9=8a+2a-9 | | -69+77=n+4 | | 3x-6=2x+1=180 | | 6x+3=4x–5 | | 2=(1.03)^x | | x+2x-2-3x+6=4x-12 | | 7x–5=4x+31 | | 22/x=15/135 |