X+(1/2x)=177

Simple and best practice solution for X+(1/2x)=177 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X+(1/2x)=177 equation:



X+(1/2X)=177
We move all terms to the left:
X+(1/2X)-(177)=0
Domain of the equation: 2X)!=0
X!=0/1
X!=0
X∈R
We add all the numbers together, and all the variables
X+(+1/2X)-177=0
We get rid of parentheses
X+1/2X-177=0
We multiply all the terms by the denominator
X*2X-177*2X+1=0
Wy multiply elements
2X^2-354X+1=0
a = 2; b = -354; c = +1;
Δ = b2-4ac
Δ = -3542-4·2·1
Δ = 125308
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{125308}=\sqrt{4*31327}=\sqrt{4}*\sqrt{31327}=2\sqrt{31327}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-354)-2\sqrt{31327}}{2*2}=\frac{354-2\sqrt{31327}}{4} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-354)+2\sqrt{31327}}{2*2}=\frac{354+2\sqrt{31327}}{4} $

See similar equations:

| x/3+8=30 | | 9=2/3x-3 | | -3v-8=-4v+1 | | 6x+3=9+5x | | 13=-7+5v | | 7x-23=49=3x=11x-1 | | x*9=27x | | 3/2x-7=-1 | | x*9x=27 | | -5(x-1)-3x-6-(4=-3) | | -630x+600=-120x+3660 | | 10x-9=9x-4 | | -5(3x+2)=80 | | 3/2b+6+1/2b=15+26 | | 9(x+8)-(3x-5)=21-11(-2x-13) | | (3/8)f+(1/2)=6((1/16)f-3) | | 3w-6=2w-3 | | (3/8)f+(1/2)=6(1/16f-3) | | -x-4=-2x+3 | | 5w-6=-1-1 | | 13x+9=12x+5 | | -2w-4=-3w-2 | | –6−3v−5=v+9 | | 9/x+4=12 | | a/5=a—3/2 | | 22+3x+6=40 | | 5/3-3m/2=31/6 | | 4/5y=-48 | | -6x/10=28 | | 77+2x=111 | | -12-2b=4-2b | | 13-x=41 |

Equations solver categories