X+(x+1)+(x+2)(x+3)=756

Simple and best practice solution for X+(x+1)+(x+2)(x+3)=756 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X+(x+1)+(x+2)(x+3)=756 equation:



X+(X+1)+(X+2)(X+3)=756
We move all terms to the left:
X+(X+1)+(X+2)(X+3)-(756)=0
We get rid of parentheses
X+X+(X+2)(X+3)+1-756=0
We multiply parentheses ..
(+X^2+3X+2X+6)+X+X+1-756=0
We add all the numbers together, and all the variables
(+X^2+3X+2X+6)+2X-755=0
We get rid of parentheses
X^2+3X+2X+2X+6-755=0
We add all the numbers together, and all the variables
X^2+7X-749=0
a = 1; b = 7; c = -749;
Δ = b2-4ac
Δ = 72-4·1·(-749)
Δ = 3045
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{3045}}{2*1}=\frac{-7-\sqrt{3045}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{3045}}{2*1}=\frac{-7+\sqrt{3045}}{2} $

See similar equations:

| -28,4c-68,8=c+589,56 | | x-11/2=x-3/12=2 | | |10-3x|=x+4 | | 5x^2+15x-7=0 | | 10x+2=15x+10 | | 7z+73=z-191 | | 180(14x=3) | | 3x-2*15=6 | | -t/4=-3•3.14 | | 14v+4=v-178 | | 9f^2-90=25f | | 77=x+3x+7x | | -5r-6=r-90 | | (14x=3) | | 9.3=1.67n | | 1.2^x=091^x+5 | | 7x^2-80=39x | | 3x-50/2=6 | | 3-2=-x-5x | | (4x-6)^2-(2x-10(2x+1)-5(2x^2-1)=2(1-5x)^2 | | Y=192(.25)+.25x | | (6x-x^2)^(-1/2)*(6-2x)=0 | | 5x-7(6x-2)=6 | | 48x^2+28x-40=0 | | 21-4/5x=5 | | 10x-3-2x=14 | | .6x-5+.8x=-19 | | 5+11=g | | |(x+3)/4|=6 | | 8-5|4x=3 | | -14(x+2/7)=12(x/8)+1/6) | | 4x+2=5x- |

Equations solver categories