X+(x-35)+1/2x+(x+46)=360

Simple and best practice solution for X+(x-35)+1/2x+(x+46)=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X+(x-35)+1/2x+(x+46)=360 equation:



X+(X-35)+1/2X+(X+46)=360
We move all terms to the left:
X+(X-35)+1/2X+(X+46)-(360)=0
Domain of the equation: 2X!=0
X!=0/2
X!=0
X∈R
We get rid of parentheses
X+X+1/2X+X-35+46-360=0
We multiply all the terms by the denominator
X*2X+X*2X+X*2X-35*2X+46*2X-360*2X+1=0
Wy multiply elements
2X^2+2X^2+2X^2-70X+92X-720X+1=0
We add all the numbers together, and all the variables
6X^2-698X+1=0
a = 6; b = -698; c = +1;
Δ = b2-4ac
Δ = -6982-4·6·1
Δ = 487180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{487180}=\sqrt{4*121795}=\sqrt{4}*\sqrt{121795}=2\sqrt{121795}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-698)-2\sqrt{121795}}{2*6}=\frac{698-2\sqrt{121795}}{12} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-698)+2\sqrt{121795}}{2*6}=\frac{698+2\sqrt{121795}}{12} $

See similar equations:

| 6f+8f=119 | | 1/3(6x+9)=21 | | 225-(x^2/4)=0 | | 3y+37=20+8y | | X*x*1.5=180 | | N/13=4;n=14 | | 2(3+5x=6+5x | | x+(2x)=44 | | 8a+3=40 | | 4x+8=9+3 | | X^x=x^2-11x+55 | | 4−1=3y+5 | | X-5/2=3x-2(×-3) | | 238=132-y | | 5x+30=-3x+96 | | 4y+39=26+7y | | 6x-12=6(x-2 | | 18.84=3.14r^2 | | 18.84=3.14r2 | | 8=2y-1 | | x+42=166 | | (x+1)4=2(2x-3)+2(x-1) | | 3x-27=-3 | | X=7y+42 | | 3x-2+10x=30-3x | | I3x-2+10x=30-3x | | 10−5h=-3h | | u+4.4=2.9 | | 10d/7-60=d | | -48v+1(2v+3)=100 | | .083*x=1 | | 125=0.8x |

Equations solver categories