X+(x-35)+1/2x+(x-46)=360

Simple and best practice solution for X+(x-35)+1/2x+(x-46)=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X+(x-35)+1/2x+(x-46)=360 equation:



X+(X-35)+1/2X+(X-46)=360
We move all terms to the left:
X+(X-35)+1/2X+(X-46)-(360)=0
Domain of the equation: 2X!=0
X!=0/2
X!=0
X∈R
We get rid of parentheses
X+X+1/2X+X-35-46-360=0
We multiply all the terms by the denominator
X*2X+X*2X+X*2X-35*2X-46*2X-360*2X+1=0
Wy multiply elements
2X^2+2X^2+2X^2-70X-92X-720X+1=0
We add all the numbers together, and all the variables
6X^2-882X+1=0
a = 6; b = -882; c = +1;
Δ = b2-4ac
Δ = -8822-4·6·1
Δ = 777900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{777900}=\sqrt{100*7779}=\sqrt{100}*\sqrt{7779}=10\sqrt{7779}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-882)-10\sqrt{7779}}{2*6}=\frac{882-10\sqrt{7779}}{12} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-882)+10\sqrt{7779}}{2*6}=\frac{882+10\sqrt{7779}}{12} $

See similar equations:

| 4+2(3x+4x)=3x+4(3*4) | | Y+-12=4y | | X^3+8x-1=0 | | r+4=-5 | | -12=s+65 | | 6x+1=-3x+19 | | -(r–1)=-1 | | 3+2f=17 | | 2x+1=6x+81 | | 9y2−9y−4=0 | | 2/3=3/2(4/9x+3) | | 6x-24=88 | | 12x(5x+8)=34 | | -3x-101=49-9x | | -4r+-20=-73 | | -8a-8=-16 | | 33=-3(4y+1) | | 12x(5x+8)=30 | | 9-v=8 | | 4.905t^2-6.9t+0.65=0 | | D=8/5m-145.6 | | 2/3=3/2(4/9x+3 | | 3b-3=37-2b | | 4e-15=1 | | 5x-5=135 | | 11+6x-7=6x+5 | | 1/6(3x-6)=-2 | | 4w=w-18 | | 5x^2+220x-5000=0 | | -6n-20n=-2n+4-12n | | -2(x-4)-4(-6x-4)=3x-5x | | 10x15=-85 |

Equations solver categories