If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X+16=3/7*5X+16
We move all terms to the left:
X+16-(3/7*5X+16)=0
Domain of the equation: 7*5X+16)!=0We get rid of parentheses
X∈R
X-3/7*5X-16+16=0
We multiply all the terms by the denominator
X*7*5X-16*7*5X+16*7*5X-3=0
Wy multiply elements
35X^2*5-560X*5+560X*5-3=0
Wy multiply elements
175X^2-2800X+2800X-3=0
We add all the numbers together, and all the variables
175X^2-3=0
a = 175; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·175·(-3)
Δ = 2100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2100}=\sqrt{100*21}=\sqrt{100}*\sqrt{21}=10\sqrt{21}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{21}}{2*175}=\frac{0-10\sqrt{21}}{350} =-\frac{10\sqrt{21}}{350} =-\frac{\sqrt{21}}{35} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{21}}{2*175}=\frac{0+10\sqrt{21}}{350} =\frac{10\sqrt{21}}{350} =\frac{\sqrt{21}}{35} $
| 1/2x-40=20 | | x*2=14x-5 | | 3x^2-12x-14=0 | | -17x+39=180 | | 5A=4b | | 16=4+3(p+2) | | x^2+200x-5=0 | | 4(4x+8)=12 | | t2+7t+-35=2t+-11 | | (x^2-4)^2=5 | | x+(x*0.3)+(x*0.4)+(x*0.15)=12 | | 3c+7=2 | | 6^x+2^x=32(3^x+1) | | 3(10x+50)=390 | | x÷4-7=2 | | (5x+4)-(3x+4)=12 | | 4y-1=0.6666(y-5) | | 4y-1=⅔(y-5) | | 8x+12=9x+9 | | 2^n=11 | | 9x2-14x+5=0 | | 9–5x=41 | | 32(y+10)+29y+3y-15=945 | | Y=96-3x | | 4n+12=5n+2 | | 4n-5=2n+1 | | 2n+2=n+6 | | (11w)=5w+4 | | 5x+2(45/19)=10 | | 15x+6(45/19)=30 | | 25x+5x-2=0 | | (q+11)(6q+10)=0 |