X+1=4(1-x)(3-x)

Simple and best practice solution for X+1=4(1-x)(3-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X+1=4(1-x)(3-x) equation:



X+1=4(1-X)(3-X)
We move all terms to the left:
X+1-(4(1-X)(3-X))=0
We add all the numbers together, and all the variables
X-(4(-1X+1)(-1X+3))+1=0
We multiply parentheses ..
-(4(+X^2-3X-1X+3))+X+1=0
We calculate terms in parentheses: -(4(+X^2-3X-1X+3)), so:
4(+X^2-3X-1X+3)
We multiply parentheses
4X^2-12X-4X+12
We add all the numbers together, and all the variables
4X^2-16X+12
Back to the equation:
-(4X^2-16X+12)
We add all the numbers together, and all the variables
X-(4X^2-16X+12)+1=0
We get rid of parentheses
-4X^2+X+16X-12+1=0
We add all the numbers together, and all the variables
-4X^2+17X-11=0
a = -4; b = 17; c = -11;
Δ = b2-4ac
Δ = 172-4·(-4)·(-11)
Δ = 113
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-\sqrt{113}}{2*-4}=\frac{-17-\sqrt{113}}{-8} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+\sqrt{113}}{2*-4}=\frac{-17+\sqrt{113}}{-8} $

See similar equations:

| -2y+2=-7+17 | | s+13= 1 | | 11+x/4=27 | | 5/12x-3=7 | | 14.25=x19.15 | | (5x/7)-8=7 | | 1+r/1.5=9 | | 15/4+1/5x=6 | | x/4+4=17 | | 8+2x=15x-9 | | 2(-3x+5)=40 | | 4(1⁄2x+7)+5x=15 | | -9y+7=-3y+1 | | x/8.33=√5/20 | | 15/4+1/5t=6 | | 4=6–2r | | 28=r/7-26 | | -79=7w+3(4w–1) | | -6(x+8)-5=-3x-3(x+3) | | 10|n|-4=16 | | 2x+3(5-2x)=-9+5x | | 27(x+4)=-6 | | 7y-8+5y+7=0 | | –6y+14+4y=32 | | 10c+3=33 | | 2x-3=4×-5 | | x/8.33=^5/20 | | 5x+3/2=8 | | 5(X+3)=(1/2x-3) | | 41=x-23 | | x-8=-x-3 | | x/37=49 |

Equations solver categories