X+2/3x-1+1=6-x/x+1

Simple and best practice solution for X+2/3x-1+1=6-x/x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X+2/3x-1+1=6-x/x+1 equation:



X+2/3X-1+1=6-X/X+1
We move all terms to the left:
X+2/3X-1+1-(6-X/X+1)=0
Domain of the equation: 3X!=0
X!=0/3
X!=0
X∈R
Domain of the equation: X+1)!=0
X∈R
We add all the numbers together, and all the variables
X+2/3X-(-X/X+7)-1+1=0
We add all the numbers together, and all the variables
X+2/3X-(-X/X+7)=0
We get rid of parentheses
X+2/3X+X/X-7=0
Fractions to decimals
2/3X+X-7+1=0
We multiply all the terms by the denominator
X*3X-7*3X+1*3X+2=0
Wy multiply elements
3X^2-21X+3X+2=0
We add all the numbers together, and all the variables
3X^2-18X+2=0
a = 3; b = -18; c = +2;
Δ = b2-4ac
Δ = -182-4·3·2
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-10\sqrt{3}}{2*3}=\frac{18-10\sqrt{3}}{6} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+10\sqrt{3}}{2*3}=\frac{18+10\sqrt{3}}{6} $

See similar equations:

| 12x2-1728=0 | | 9x2-729=0 | | 1/2(x+4)=5x-8 | | 10x2-2560=0 | | 8x2-512=0 | | 45+36x=66+23x+31 | | 5x+7=2x-8x | | 3x-6=-4x+2 | | 3x-6=-4+2 | | 3(p-)=8+p | | y=3,6+7 | | 13x+8-9x+10=14x+10-2 | | 5x-405=0 | | 3(x+12)=5(2x+1) | | (y+5)^2=2y^2+18y+37 | | 3x-11/5+6=8 | | Mk=19° | | 9x+6=5x+8 | | 3x-11/5=8 | | 4x2-400=0 | | 8–3(x–4)=4 | | M+2/3m-1+1=6-m/m+1 | | 4x-1x2=x+7 | | 7x(x+2)=21 | | 7·(x+2)=21 | | (3w+4)-(5w+1)=w | | 2^x=0.36 | | 4/3x+5/5=13 | | 39x=x | | v/2/9=90 | | -6(2t+9)=-114 | | x+x(.075)=148.45 |

Equations solver categories