If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X+20+2(X-10)+3/2X=180
We move all terms to the left:
X+20+2(X-10)+3/2X-(180)=0
Domain of the equation: 2X!=0We add all the numbers together, and all the variables
X!=0/2
X!=0
X∈R
X+2(X-10)+3/2X-160=0
We multiply parentheses
X+2X+3/2X-20-160=0
We multiply all the terms by the denominator
X*2X+2X*2X-20*2X-160*2X+3=0
Wy multiply elements
2X^2+4X^2-40X-320X+3=0
We add all the numbers together, and all the variables
6X^2-360X+3=0
a = 6; b = -360; c = +3;
Δ = b2-4ac
Δ = -3602-4·6·3
Δ = 129528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{129528}=\sqrt{36*3598}=\sqrt{36}*\sqrt{3598}=6\sqrt{3598}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-360)-6\sqrt{3598}}{2*6}=\frac{360-6\sqrt{3598}}{12} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-360)+6\sqrt{3598}}{2*6}=\frac{360+6\sqrt{3598}}{12} $
| 2/x=⅘ | | t-0.75=1.50 | | 3-1x/4=2 | | 21x-41=13 | | 3x+56=1 | | 42x^2=378 | | 27=36-u | | -5y+9=-2y+30 | | 3x+3/2x=180 | | 3x+9=-7x-41 | | x-11=2x-33 | | 0=8v+8 | | (6x+19)x=180 | | -3x+9=2(x+7) | | -3x+9=2x(x+7) | | 7-g=0 | | -16=3x+2=-5 | | 2x+17=5-12x | | 2x+4(2-5x)=1-(4-x) | | (x+9)=90 | | 4(x+3.5)=24 | | 3y-40=-4 | | 6r+11=3r-2 | | 6r-11=3r+2 | | X+20+2(x-10)+3/2=180 | | -3x+-5=-5x-3 | | (D^2+3D+A2)y=0 | | 3x+5=5x=3 | | 12.9/x=4.3 | | 7(x+6)+7x=9+11x | | 105+115+110+7x=540 | | -0.2x-0.73=0.33+1.2 |