If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X+258=(X+6)(X+10)
We move all terms to the left:
X+258-((X+6)(X+10))=0
We multiply parentheses ..
-((+X^2+10X+6X+60))+X+258=0
We calculate terms in parentheses: -((+X^2+10X+6X+60)), so:We add all the numbers together, and all the variables
(+X^2+10X+6X+60)
We get rid of parentheses
X^2+10X+6X+60
We add all the numbers together, and all the variables
X^2+16X+60
Back to the equation:
-(X^2+16X+60)
X-(X^2+16X+60)+258=0
We get rid of parentheses
-X^2+X-16X-60+258=0
We add all the numbers together, and all the variables
-1X^2-15X+198=0
a = -1; b = -15; c = +198;
Δ = b2-4ac
Δ = -152-4·(-1)·198
Δ = 1017
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1017}=\sqrt{9*113}=\sqrt{9}*\sqrt{113}=3\sqrt{113}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-3\sqrt{113}}{2*-1}=\frac{15-3\sqrt{113}}{-2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+3\sqrt{113}}{2*-1}=\frac{15+3\sqrt{113}}{-2} $
| -6x+2=5x+4 | | 15/p=6/9 | | 2z^2-8z+3=z^2+2z | | 100d=13.75 | | 3x^2+(-24x)=0 | | 4x2+3x–12=6x2–7x–60 | | 2x+1/3=x | | 7d−6d=5 | | 20/5=x | | 6n−4n=12 | | 30=4u+2u | | 25x+14=-x-90 | | Y=-4.6+2x=8x-61 | | 12z+(4=2z) | | 4.96=0.3t | | 4m-7=-31 | | 3+4x=3x+19 | | (x-2)(x-7)=9 | | -5=4+x/3 | | 7-3x=5x-2(4x+1) | | 5-3y=65 | | -15=18x-4 | | -2=t3-11 | | (2x/5)-(x-3)=3 | | -7=2+s | | 5(-1+5x)+5(-8x-2)=-4x-8x | | -10+4x=74 | | (2x+9/3)+(2/3)=-(3x/2) | | (2x+9)/3+(2/3)=-(3x/2) | | 6a=-5a+6a | | 2.75j+2.25-1.5j+3=0 | | 23x+5x=3 |