X+2x+1/32x=120

Simple and best practice solution for X+2x+1/32x=120 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X+2x+1/32x=120 equation:



X+2X+1/32X=120
We move all terms to the left:
X+2X+1/32X-(120)=0
Domain of the equation: 32X!=0
X!=0/32
X!=0
X∈R
We add all the numbers together, and all the variables
3X+1/32X-120=0
We multiply all the terms by the denominator
3X*32X-120*32X+1=0
Wy multiply elements
96X^2-3840X+1=0
a = 96; b = -3840; c = +1;
Δ = b2-4ac
Δ = -38402-4·96·1
Δ = 14745216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14745216}=\sqrt{64*230394}=\sqrt{64}*\sqrt{230394}=8\sqrt{230394}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3840)-8\sqrt{230394}}{2*96}=\frac{3840-8\sqrt{230394}}{192} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3840)+8\sqrt{230394}}{2*96}=\frac{3840+8\sqrt{230394}}{192} $

See similar equations:

| 4(h)+6=-6 | | 2(2x-4)-x=8-3x | | 1/3*(x-5)+2x=16 | | 2x=44-9x | | 1/3(x-5)+2x=16 | | 27=12+x=11 | | -2x^2-9x+12=0 | | X÷5-3=x÷10+4 | | -(4x-1)=-2x+4 | | 3×-8y=-16 | | 4x+15x=3500 | | 3^(x+1)*2^x=5^(2x) | | 93-36t=82 | | 2m-13=9 | | 3y+11=35 | | 3×+2y=22 | | 325=0.65x | | -41+3x=-23-8 | | 7x^2-20x-3/(x^2+1)=0 | | (2x+7)=5x+3 | | 46x+56=0 | | 46x-56=0 | | 2^x*4^(x+1)=70 | | 3h/4-10=18 | | h+h*0,07*5/12=35000 | | p/100*1300=700 | | 60/x=83/100 | | 15x^2-8-14x=0 | | x+10+x+x+10+10=180 | | 4p+2=1 | | -3/4x+3=9 | | 2x-70=110 |

Equations solver categories