X+5/3x+(2x+20)+(x+15)=180

Simple and best practice solution for X+5/3x+(2x+20)+(x+15)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X+5/3x+(2x+20)+(x+15)=180 equation:



X+5/3X+(2X+20)+(X+15)=180
We move all terms to the left:
X+5/3X+(2X+20)+(X+15)-(180)=0
Domain of the equation: 3X!=0
X!=0/3
X!=0
X∈R
We get rid of parentheses
X+5/3X+2X+X+20+15-180=0
We multiply all the terms by the denominator
X*3X+2X*3X+X*3X+20*3X+15*3X-180*3X+5=0
Wy multiply elements
3X^2+6X^2+3X^2+60X+45X-540X+5=0
We add all the numbers together, and all the variables
12X^2-435X+5=0
a = 12; b = -435; c = +5;
Δ = b2-4ac
Δ = -4352-4·12·5
Δ = 188985
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-435)-\sqrt{188985}}{2*12}=\frac{435-\sqrt{188985}}{24} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-435)+\sqrt{188985}}{2*12}=\frac{435+\sqrt{188985}}{24} $

See similar equations:

| 3(×+3)=5x-5 | | P^2+14p-25=0 | | 5x±3=4+3x | | a-1/3=3/5 | | -27=x+15 | | 2-4(5p=1) | | 2x-×=21 | | 1.2x=–4.8 | | 2/x+12-3/x-12=5x/x2-144 | | 3/4x+17=-9x-7x+37 | | 3/4x+17=-9x+7x+37 | | 7x+5(2-x)=-10 | | 4m-14=-32+m | | 12q+5-9q=10 | | 227+5(x−3)=227 | | -3(k+5)-(k+5)=23 | | 2(^3x)=1/64 | | 8k^+27k-17=3k^+8+7k | | x^2-44x+315=0 | | 28x^2+37x+12=0 | | -3r-10=14 | | (X+5)+(3x-1)+(4x-2)=66 | | -6x-16=38 | | 3v+15=51 | | 6y+43=7 | | 6w+6=4(w+6) | | 35=5/3y | | 3b=240 | | 8x-7=3(2x+7)-5 | | 8.5/11=x/15 | | 110+14+(7x+7)=180 | | 40=4u |

Equations solver categories